Learning Invariant Features Using Subspace Restricted Boltzmann Machine

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subspace Restricted Boltzmann Machine

The subspace Restricted Boltzmann Machine (subspaceRBM) is a third-order Boltzmann machine where multiplicative interactions are between one visible and two hidden units. There are two kinds of hidden units, namely, gate units and subspace units. The subspace units reflect variations of a pattern in data and the gate unit is responsible for activating the subspace units. Additionally, the gate ...

متن کامل

Learning Spam Features Using Restricted Boltzmann Machines

Nowadays, spam detection has been one of the foremost machine learning-oriented applications in the context of security in computer networks. In this work, we propose to learn intrinsic properties of e-mail messages by means of Restricted Boltzmann Machines (RBMs) in order to identity whether such messages contain relevant (ham) or non-relevant (spam) content. The main idea contribution of this...

متن کامل

Rotation-Invariant Restricted Boltzmann Machine Using Shared Gradient Filters

Finding suitable features has been an essential problem in computer vision. We focus on Restricted Boltzmann Machines (RBMs), which, despite their versatility, cannot accommodate transformations that may occur in the scene. As result, several approaches have been proposed that consider a set of transformations, which are used to either augment the training set or transform the actual learned fi...

متن کامل

Inductive Principles for Restricted Boltzmann Machine Learning

Recent research has seen the proposal of several new inductive principles designed specifically to avoid the problems associated with maximum likelihood learning in models with intractable partition functions. In this paper, we study learning methods for binary restricted Boltzmann machines (RBMs) based on ratio matching and generalized score matching. We compare these new RBM learning methods ...

متن کامل

Investigating Convergence of Restricted Boltzmann Machine Learning

Restricted Boltzmann Machines are increasingly popular tools for unsupervised learning. They are very general, can cope with missing data and are used to pretrain deep learning machines. RBMs learn a generative model of the data distribution. As exact gradient ascent on the data likelihood is infeasible, typically Markov Chain Monte Carlo approximations to the gradient such as Contrastive Diver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neural Processing Letters

سال: 2016

ISSN: 1370-4621,1573-773X

DOI: 10.1007/s11063-016-9519-9